MATHEMATICS
 Module 3
 Geometry

TABLE OF CONTENTS

LIST OF FIGURES ii
LIST OF TABLES iii
REFERENCES iv
OBJECTIVES v
BASIC CONCEPTS OF GEOMETRY 1
Terms 1
Lines 1
Important Facts 2
Angles 2
Summary 5
SHAPES AND FIGURES OF PLANE GEOMETRY 6
Triangles 6
Area and Perimeter of Triangles 7
Quadrilaterals 8
Circles 11
Summary 12
SOLID GEOMETRIC FIGURES 13
Rectangular Solids 13
Cube 14
Sphere 14
Right Circular Cone 15
Right Circular Cylinder 16
Summary 17

LIST OF FIGURES

Figure 1 Angle . 2
Figure $2 \quad 360^{\circ}$ Angle ... 3
Figure 3 Right Angle .. 3
Figure 4 Straight Angle . 3
Figure 5 Acute Angle . 4
Figure 6 Obtuse Angle . 4
Figure 7 Reflex Angle . 4
Figure 8 Types of Triangles . 7
Figure 9 Area of a Triangle . 7

Figure 10 Parallelogram . 8
Figure 11 Rectangle . 9

Figure 12 Square . 10
Figure 13 Circle 11

Figure 14 Rectangular Solid . 13
Figure 15 Cube . 14
Figure 16 Sphere . 15
Figure 17 Right Circular Cone . 15
Figure 18 Right Circular Cylinder . 16

REFERENCES

- Dolciani, Mary P., et al., Algebra Structure and Method Book 1, Atlanta: HoughtonMifflin, 1979.
- Naval Education and Training Command, Mathematics, Vol:1, NAVEDTRA 10069-D1, Washington, D.C.: Naval Education and Training Program Development Center, 1985.
- Olivio, C. Thomas and Olivio, Thomas P., Basic Mathematics Simplified, Albany, NY: Delmar, 1977.
- Science and Fundamental Engineering, Windsor, CT: Combustion Engineering, Inc., 1985.
- Academic Program For Nuclear Power Plant Personnel, Volume 1, Columbia, MD: General Physics Corporation, Library of Congress Card \#A 326517, 1982.

TERMINAL OBJECTIVE

1.0 Given a calculator and the correct formula, APPLY the laws of geometry to solve mathematical problems.

ENABLING OBJECTIVES

1.1 IDENTIFY a given angle as either:
a. Straight
b. Acute
c. Right
d. Obtuse
1.2 STATE the definitions of complimentary and supplementary angles.
1.3 STATE the definition of the following types of triangles:
a. Equilateral
b. Isosceles
c. Acute
d. Obtuse
e. Scalene
1.4 Given the formula, CALCULATE the area and the perimeter of each of the following basic geometric shapes:
a. Triangle
b. Parallelogram
c. Circle
1.5 Given the formula, CALCULATE the volume and surface areas of the following solid figures:
a. Rectangular solid
b. Cube
c. Sphere
d. Right circular cone
e. Right circular cylinder

BASIC CONCEPTS OF GEOMETRY

This chapter covers the basic language and terminology of plane geometry.

EO 1.1 IDENTIFY a given angle as either:

a. Straight
b. Acute
c. Right
d. Obtuse

EO 1.2 STATE the definitions of complimentary and supplementary angles.

Geometry is one of the oldest branches of mathematics. Applications of geometric constructions were made centuries before the mathematical principles on which the constructions were based were recorded. Geometry is a mathematical study of points, lines, planes, closed flat shapes, and solids. Using any one of these alone, or in combination with others, it is possible to describe, design, and construct every visible object.

The purpose of this section is to provide a foundation of geometric principles and constructions on which many practical problems depend for solution.

Terms

There are a number of terms used in geometry.

1. A plane is a flat surface.
2. Space is the set of all points.
3. Surface is the boundary of a solid.
4. Solid is a three-dimensional geometric figure.
5. Plane geometry is the geometry of planar figures (two dimensions). Examples are: angles, circles, triangles, and parallelograms.
6. Solid geometry is the geometry of three-dimensional figures. Examples are: cubes, cylinders, and spheres.

Lines

A line is the path formed by a moving point. A length of a straight line is the shortest distance between two nonadjacent points and is made up of collinear points. A line segment is a portion of a line. A ray is an infinite set of collinear points extending from one end point to infinity. A set of points is noncollinear if the points are not contained in a line.

Two or more straight lines are parallel when they are coplanar (contained in the same plane) and do not intersect; that is, when they are an equal distance apart at every point.

Important Facts

The following facts are used frequently in plane geometry. These facts will help you solve problems in this section.

1. The shortest distance between two points is the length of the straight line segment joining them.
2. A straight line segment can be extended indefinitely in both directions.
3. Only one straight line segment can be drawn between two points.
4. A geometric figure can be moved in the plane without any effect on its size or shape.
5. Two straight lines in the same plane are either parallel or they intersect.
6. Two lines parallel to a third line are parallel to each other.

Angles

An angle is the union of two nonparallel rays originating from the same point; this point is known as the vertex. The rays are known as sides of the angle, as shown in Figure 1.

Figure 1 Angle

If ray $A B$ is on top of ray $B C$, then the angle $A B C$ is a zero angle. One complete revolution of a ray gives an angle of 360°.

Figure 2-360 Angle

Depending on the rotation of a ray, an angle can be classified as right, straight, acute, obtuse, or reflex. These angles are defined as follows:

Right Angle - angle with a ray separated by 90°.

Figure 3 Right Angle

Straight Angle - angle with a ray separated by 180° to form a straight line.

Figure 4 Straight Angle

Acute Angle - angle with a ray separated by less than 90°.

Figure 5 Acute Angle

Obtuse Angle - angle with a ray rotated greater than 90° but less than 180°.

Figure 6 Obtuse Angle

Reflex Angle - angle with a ray rotated greater than 180°.

Figure 7 Reflex Angle

If angles are next to each other, they are called adjacent angles. If the sum of two angles equals 90°, they are called complimentary angles. For example, 27° and 63° are complimentary angles. If the sum of two angles equals 180°, they are called supplementary angles. For example, 73° and 107° are supplementary angles.

Summary

The important information in this chapter is summarized below.

Lines and Angles Summary

- Straight lines are parallel when they are in the same plane and do not intersect.
- A straight angle is 180°.
- An acute angle is less than 90°.
- A right angle is 90°.
- An obtuse angle is greater than 90° but less than 180°.
- If the sum of two angles equals 90°, they are complimentary angles.
- If the sum of two angles equals 180°, they are supplementary angles.

SHAPES AND FIGURES OF PLANE GEOMETRY

This chapter covers the calculation of the perimeter and area of selected plane figures.

EO 1.3 STATE the definition of the following types of triangles:
a. Equilateral
b. Isosceles
c. Acute
d. Obtuse
e. Scalene

EO 1.4 Given the formula, CALCULATE the area and the perimeter of each of the following basic geometric shapes:
a. Triangle
b. Parallelogram
c. Circle

The terms and properties of lines, angles, and circles may be applied in the layout, design, development, and construction of closed flat shapes. A new term, plane, must be understood in order to accurately visualize a closed, flat shape. A plane refers to a flat surface on which lies a straight line connecting any two points.

A plane figure is one which can be drawn on a plane surface. There are many types of plane figures encountered in practical problems. Fundamental to most design and construction are three flat shapes: the triangle, the rectangle, and the circle.

Triangles

A triangle is a figure formed by using straight line segments to connect three points that are not in a straight line. The straight line segments are called sides of the triangle.

Examples of a number of types of triangles are shown in Figure 8. An equilateral triangle is one in which all three sides and all three angles are equal. Triangle $A B C$ in Figure 8 is an example of an equilateral triangle. An isosceles triangle has two equal sides and two equal angles (triangle $D E F$). A right triangle has one of its angles equal to 90° and is the most important triangle for our studies (triangle GHI). An acute triangle has each of its angles less than 90° (triangle $J K L$). Triangle $M N P$ is called a scalene triangle because each side is a different length. Triangle $Q R S$ is considered an obtuse triangle since it has one angle greater than 90°. A triangle may have more than one of these attributes. The sum of the interior angles in a triangle is always 180°.

Figure 8 Types of Triangles

Area and Perimeter of Triangles

The area of a triangle is calculated using the formula:

$$
\begin{equation*}
A=(1 / 2)(\text { base }) \cdot(\text { height }) \tag{3-1}
\end{equation*}
$$

or

Figure 9 Area of a Triangle

The perimeter of a triangle is calculated using the formula:

$$
\begin{equation*}
P=\text { side }_{1}+\text { side }_{2}+\text { side }_{3} . \tag{3-2}
\end{equation*}
$$

The area of a traingle is always expressed in square units, and the perimeter of a triangle is always expressed in the original units.

Example:

Calculate the area and perimeter of a right triangle with a $9 "$ base and sides measuring 12 " and $15^{\prime \prime}$. Be sure to include the units in your answer.

Solution:

$$
\begin{aligned}
& A=1 / 2 b h \\
& A=.5(9)(12) \\
& A=.5(108) \\
& A=54 \text { square inches }
\end{aligned}
$$

$$
P=s_{1}+s_{2}+b
$$

$$
P=9+12+15
$$

$$
P=36 \text { inches }
$$

Quadrilaterals

A quadrilateral is any four-sided geometric figure.

A parallelogram is a four-sided quadrilateral with both pairs of opposite sides parallel, as shown in Figure 10.

The area of the parallelogram is calculated

Figure 10 Parallelogram using the following formula:

$$
\begin{equation*}
A=(\text { base }) \cdot(h e i g h t)=b h \tag{3-3}
\end{equation*}
$$

The perimeter of a parallelogram is calculated using the following formula:

$$
\begin{equation*}
P=2 a+2 b \tag{3-4}
\end{equation*}
$$

The area of a parallelogram is always expressed in square units, and the perimeter of a parallelogram is always expressed in the original units.

Example:

Calculate the area and perimeter of a parallelogram with base $(b)=4^{\prime}$, height $(h)=3^{\prime}, a=5^{\prime}$ and $b=4^{\prime}$. Be sure to include units in your answer.

Solution:

$$
\begin{array}{ll}
A=b h & P=2 a+2 b \\
A=(4)(3) & P=2(5)+2(4) \\
A=12 \text { square feet } & P=10+8 \\
& P=18 \text { feet }
\end{array}
$$

A rectangle is a parallelogram with four right angles, as shown in Figure 11.

Figure 11 Rectangle
The area of a rectangle is calculated using the following formula:

$$
\begin{equation*}
A=(\text { length }) \cdot(\text { width })=l w \tag{3-5}
\end{equation*}
$$

The perimeter of a rectangle is calculated using the following formula:

$$
\begin{equation*}
P=2(\text { length })+2(\text { width })=2 l+2 w \tag{3-6}
\end{equation*}
$$

The area of a rectangle is always expressed in square units, and the perimeter of a rectangle is always expressed in the original units.

Example:

Calculate the area and perimeter of a rectangle with $w=5^{\prime}$ and $l=6^{\prime}$. Be sure to include units in your answer.

Solution:

$$
\begin{array}{ll}
A=l w & P=2 l+2 w \\
A=(5)(6) & P=2(5)+2(6) \\
A=30 \text { square feet } & P=10+12 \\
& P=22 \text { feet }
\end{array}
$$

A square is a rectangle having four equal sides, as shown in Figure 12.

The area of a square is calculated using the following formula:

$$
\begin{equation*}
A=a^{2} \tag{3-7}
\end{equation*}
$$

The perimeter of a square is calculated using the following formula:

$$
\begin{equation*}
A=4 a \tag{3-8}
\end{equation*}
$$

Figure 12 Square

The area of a square is always expressed in square units, and the perimeter of a square is always expressed in the original units.

Example:

Calculate the area and perimeter of a square with $a=5^{\prime}$. Be sure to include units in your answer.

Solution:

$$
\begin{array}{ll}
A=a^{2} & P=4 a \\
A=(5)(5) & P=4(5) \\
A=25 \text { square feet } & P=20 \text { feet }
\end{array}
$$

Circles

A circle is a plane curve which is equidistant from the center, as shown in Figure 13. The length of the perimeter of a circle is called the circumference. The radius (r) of a circle is a line segment that joins the center of a circle with any point on its circumference. The diameter (D) of a circle is a line segment connecting two points of the circle through the center. The area of a circle is calculated using the following formula:

$$
\begin{equation*}
A=\pi r^{2} \tag{3-9}
\end{equation*}
$$

The circumference of a circle is calculated using the following formula:

$$
\begin{equation*}
C=2 \pi r \tag{3-10}
\end{equation*}
$$

Figure 13 Circle
or

$$
C=\pi D
$$

$\operatorname{Pi}(\pi)$ is a theoretical number, approximately $22 / 7$ or 3.141592654 , representing the ratio of the circumference to the diameter of a circle. The scientific calculator makes this easy by designating a key for determining π.

The area of a circle is always expressed in square units, and the perimeter of a circle is always expressed in the original units.

Example:

Calculate the area and circumference of a circle with a 3 " radius. Be sure to include units in your answer.

Solution:

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=\pi(3)(3) \\
& A=\pi(9) \\
& A=28.3 \text { square inches }
\end{aligned}
$$

$$
C=2 \pi r
$$

$$
C=(2) \pi(3)
$$

$$
C=\pi(6)
$$

$$
C=18.9 \text { inches }
$$

Summary

The important information in this chapter is summarized below.

Shapes and Figures of Plane Geometry Summary

- Equilateral Triangle
- Isosceles Triangle
- Right Triangle
- Acute Triangle
- Obtuse Triangle
- Scalene Triangle
- Area of a triangle
- Perimeter of a triangle
- Area of a parallelogram
- Perimeter of a parallelogram
- Area of a rectangle
- Perimeter of a rectangle
- $\quad P=2($ length $)+2($ width $)$
- Area of a square
- $\quad A=e d g e^{2}$
- Perimeter of a square
- $\quad P=4 \mathrm{x}$ edge
- Area of a circle
- $\quad A=\pi r^{2}$
- Circumference of a circle
- $\quad C=2 \pi r$

SOLID GEOMETRIC FIGURES

This chapter covers the calculation of the surface area and volume of selected solid figures.

EO 1.5 Given the formula, CALCULATE the volume and surface areas of the following solid figures:
a. Rectangular solid
b. Cube
c. Sphere
d. Right circular cone
e. Right circular cylinder

The three flat shapes of the triangle, rectangle, and circle may become solids by adding the third dimension of depth. The triangle becomes a cone; the rectangle, a rectangular solid; and the circle, a cylinder.

Rectangular Solids

A rectangular solid is a six-sided solid figure with faces that are rectangles, as shown in Figure 14.

The volume of a rectangular solid is calculated using the following formula:

$$
\begin{equation*}
V=a b c \tag{3-11}
\end{equation*}
$$

The surface area of a rectangular solid is calculated using the following formula:

$$
\begin{equation*}
S A=2(a b+a c+b c) \tag{3-12}
\end{equation*}
$$

The surface area of a rectangular solid is expressed in square units, and the volume of a rectangular solid is expressed in cubic units.

Example:

Calculate the volume and surface area of a rectangular solid with $a=3{ }^{\prime \prime}, b=4^{\prime \prime}$, and $c=5 "$. Be sure to include units in your answer.

Solution:

$$
\begin{array}{ll}
V=(a)(b)(c) & S A=2(a b+a c+b c) \\
V=(3)(4)(5) & S A=2[(3)(4)+(3)(5)+(4)(5)] \\
V=(12)(5) & S A=2[12+15+20] \\
V=60 \text { cubic inches } & S A=2[47] \\
& S A=94 \text { square inches }
\end{array}
$$

Cube

A cube is a six-sided solid figure whose faces are congruent squares, as shown in Figure 15.

The volume of a cube is calculated using the following formula:

$$
\begin{equation*}
V=a^{3} \tag{3-13}
\end{equation*}
$$

The surface area of a cube is calculated using the following formula:

$$
\begin{equation*}
S A=6 a^{2} \tag{3-14}
\end{equation*}
$$

Figure 15 Cube

The surface area of a cube is expressed in square units, and the volume of a cube is expressed in cubic units.

Example:

Calculate the volume and surface area of a cube with $a=3$ ". Be sure to include units in your answer.

Solution:

$$
\begin{array}{ll}
V=a^{3} & S A=6 a^{2} \\
V=(3)(3)(3) & S A=6(3)(3) \\
V=27 \text { cubic inches } & S A=6(9) \\
& S A=54 \text { square inches }
\end{array}
$$

Sphere

A sphere is a solid, all points of which are equidistant from a fixed point, the center, as shown in Figure 16.

The volume of a sphere is calculated using the following formula:

$$
\begin{equation*}
V=4 / 3 \pi r^{3} \tag{3-15}
\end{equation*}
$$

The surface area of a sphere is calculated using the following formula:

$$
\begin{equation*}
S A=4 \pi r^{2} \tag{3-16}
\end{equation*}
$$

The surface area of a sphere is expressed in square units, and the volume of a sphere is expressed in cubic units.

Figure 16 Sphere

Example:

Calculate the volume and surface area of a sphere with $r=4^{\prime \prime}$. Be sure to include units in your answer.

Solution:

$$
\begin{aligned}
& V=4 / 3 \pi r^{3} \\
& V=4 / 3 \pi(4)(4)(4) \\
& V=4.2(64) \\
& V=268.8 \text { cubic inches }
\end{aligned}
$$

$$
S A=4 \pi r^{2}
$$

$$
S A=4 \pi(4)(4)
$$

$$
S A=12.6(16)
$$

$$
S A=201.6 \text { square inches }
$$

Right Circular Cone

A right circular cone is a cone whose axis is a line segment joining the vertex to the midpoint of the circular base, as shown in Figure 17.

The volume of a right circular cone is calculated using the following formula:

$$
\begin{equation*}
V=1 / 3 \pi r^{2} h \tag{3-17}
\end{equation*}
$$

The surface area of a right circular cone is calculated using the following formula:

Figure 17 Right Circular Cone

$$
\begin{equation*}
S A=\pi r^{2}+\pi r l \tag{3-18}
\end{equation*}
$$

The surface area of a right circular cone is expressed in square units, and the volume of a right circular cone is expressed in cubic units.

Example:

Calculate the volume and surface area of a right circular cone with $r=3$ ", $h=4$ ", and $l=5{ }^{\prime \prime}$. Be sure to include the units in your answer.

Solution:

$$
\begin{aligned}
& V=1 / 3 \pi r^{2} h \\
& V=1 / 3 \pi(3)(3)(4) \\
& V=1.05(36) \\
& V=37.8 \text { cubic inches }
\end{aligned}
$$

$$
\begin{aligned}
& S A=\pi r^{2}+\pi r l \\
& S A=\pi(3)(3)+\pi(3)(5) \\
& S A=\pi(9)+\pi(15) \\
& S A=28.3+47.1 \\
& S A=528 / 7=75-3 / 7 \text { square inches }
\end{aligned}
$$

Right Circular Cylinder

A right circular cylinder is a cylinder whose base is perpendicular to its sides. Facility equipment, such as the reactor vessel, oil storage tanks, and water storage tanks, is often of this type.

The volume of a right circular cylinder is calculated using the following formula:

$$
\begin{equation*}
V=\pi r^{2} h \tag{3-19}
\end{equation*}
$$

Figure 18 Right Circular Cylinder

The surface area of a right circular cylinder is calculated using the following formula:

$$
\begin{equation*}
S A=2 \pi r h+2 \pi r^{2} \tag{3-20}
\end{equation*}
$$

The surface area of a right circular cylinder is expressed in square units, and the volume of a right circular cylinder is expressed in cubic units.

Example:

Calculate the volume and surface area of a right circular cylinder with $r=3{ }^{\prime \prime}$ and $h=4^{\prime \prime}$. Be sure to include units in your answer.

Solution:

$$
\begin{array}{ll}
V=\pi r^{2} h & S A=2 \pi r h+2 \pi r^{2} \\
V=\pi(3)(3)(4) & S A=2 \pi(3)(4)+2 \pi(3)(3) \\
V=\pi(36) & S A=2 \pi(12)+2 \pi(9) \\
V=113.1 \text { cubic inches } & S A=132 \text { square inches }
\end{array}
$$

Summary

The important information in this chapter is summarized below.

Solid Geometric Shapes Summary

- Volume of a rectangular solid: $a b c$

Surface area of a rectangular solid: $2(a b+a c+b c)$

- Volume of a cube: a^{3}
- \quad Surface area of a cube: $6 a^{2}$
- Volume of a sphere: $4 / 3 \pi r^{3}$
- Surface area of a sphere: $4 \pi r^{2}$
- Volume of a right circular cone: $1 / 3 \pi r^{2} h$
- Surface area of a right circular cone: $\pi r^{2}+\pi r l$
- Volume of a right circular cylinder: $\pi r^{2} h$
- Surface area of right circular cylinder: $2 \pi r h+2 \pi r^{2}$

